tonic.datasets.ntidigits18
#
Module Contents#
Classes#
- class tonic.datasets.ntidigits18.NTIDIGITS18(save_to: str, train: bool = True, single_digits=False, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None)[source]#
Bases:
tonic.dataset.Dataset
N-TIDIGITS18 Dataset Cochlea Spike Dataset.
@article{anumula2018feature, title={Feature representations for neuromorphic audio spike streams}, author={Anumula, Jithendar and Neil, Daniel and Delbruck, Tobi and Liu, Shih-Chii}, journal={Frontiers in neuroscience}, volume={12}, pages={23}, year={2018}, publisher={Frontiers Media SA} }
- Parameters:
save_to (string) – Location to save files to on disk. Will put files in an ‘hsd’ subfolder.
train (bool) – If True, uses training subset, otherwise testing subset.
single_digits (bool) – If True, only returns samples with single digits (o, 1, 2, 3, 4, 5, 6, 7, 8, 9, z), with class 0 for ‘o’ and 11 for ‘z’.
transform (callable, optional) – A callable of transforms to apply to the data.
target_transform (callable, optional) – A callable of transforms to apply to the targets/labels.
- Returns:
A dataset object that can be indexed or iterated over. One sample returns a tuple of (events, targets).
- base_url = 'https://www.dropbox.com/scl/fi/1x4lxt9yyw25sc3tez8oi/n-tidigits.hdf5?e=2&rlkey=w8gi5udvib2zqzosus...'#
- filename = 'n-tidigits.hdf5'#
- file_md5 = '360a2d11e5429555c9197381cf6b58e0'#
- folder_name = ''#
- sensor_size = (64, 1, 1)#
- dtype#
- ordering#
- class_map#