Note
Go to the end to download the full example code.
EventDownsampling#
The EventDownsampling
applies
spatio-temporal downsampling to events as per the downsampling method chosen.
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers). Got range [0.0..3.0].
import tonic
nmnist = tonic.datasets.NMNIST("../../tutorials/data", train=False)
events, label = nmnist[0]
transform = tonic.transforms.Compose(
[
tonic.transforms.EventDownsampling(sensor_size=nmnist.sensor_size,
target_size=(12, 12),
dt=0.01,
downsampling_method="differentiator",
noise_threshold=0,
differentiator_time_bins=2),
tonic.transforms.ToFrame(
sensor_size=(12, 12, 2),
time_window=10000,
),
]
)
frames = transform(events)
ani = tonic.utils.plot_animation(frames)
Total running time of the script: (0 minutes 7.003 seconds)